Oxidative stress causes ferredoxin-NADP+ reductase solubilization from the thylakoid membranes in methyl viologen-treated plants.

نویسندگان

  • J F Palatnik
  • E M Valle
  • N Carrillo
چکیده

The flavoenzyme ferredoxin-NADP+ reductase (FNR) is a member of the cellular defense barrier against oxidative damage in Escherichia coli. We evaluated the responses of chloroplast FNR to methyl viologen, a superoxide radical propagator, in wheat (Triticum aestivum L.) plants and chloroplasts. Treatments with the herbicide showed little effect on the levels of FNR protein or transcripts, indicating that expression of this reductase is not upregulated by oxidants in plants. Viologens and peroxides caused solubilization of active FNR from the thylakoids into the stroma, converting the enzyme from a membrane-bound NADPH producer to a soluble NADPH consumer. This response appeared specific for FNR, since other thylakoid proteins were unaffected by the treatments. The reductase-binding protein was released together with FNR, suggesting that it might be the target of oxidative modification. Stromal accumulation of a functional NADPH reductase in response to oxidative stress is formally analogous to the induction of FNR synthesis observed in E. coli under similar conditions. FNR solubilization may be playing a crucial role in maintaining the NADPH/NADP+ homeostasis of the stressed plastid. The unchecked accumulation of NADPH might otherwise increase the risks of oxidative damage through a rise in the Mehler reaction rates and/or the production of hydroxyl radicals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heparin inhibition of ferredoxin-NADP reductase in chloroplast thylakoid membranes.

Heparin, an anionic polysaccharide, inhibited the ferredoxin-catalyzed reduction of NADP in spinach chloroplast thylakoid membranes. Under the same conditions of assay, heparin did not interfere markedly with photoreduction of methyl viologen, anthraquinone sulfonate, or ferredoxin. A kinetic analysis of the heparin-induced interference with NADP photoreduction showed partial competitive inhibi...

متن کامل

An in vivo system involving co-expression of cyanobacterial flavodoxin and ferredoxin–NADP+ reductase confers increased tolerance to oxidative stress in plants

Oxidative stress in plants causes ferredoxin down-regulation and NADP(+) shortage, over-reduction of the photosynthetic electron transport chain, electron leakage to oxygen and generation of reactive oxygen species (ROS). Expression of cyanobacterial flavodoxin in tobacco chloroplasts compensates for ferredoxin decline and restores electron delivery to productive routes, resulting in enhanced s...

متن کامل

TROL-FNR interaction reveals alternative pathways of electron partitioning in photosynthesis

In photosynthesis, final electron transfer from ferredoxin to NADP(+) is accomplished by the flavo enzyme ferredoxin:NADP(+) oxidoreductase (FNR). FNR is recruited to thylakoid membranes via integral membrane thylakoid rhodanase-like protein TROL. We address the fate of electrons downstream of photosystem I when TROL is absent. We have employed electron paramagnetic resonance (EPR) spectroscopy...

متن کامل

Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress.

Ferredoxin-NADP(H) reductase (FNR) catalyzes the last step of photosynthetic electron transport in chloroplasts, driving electrons from reduced ferredoxin to NADP+. This reaction is rate limiting for photosynthesis under a wide range of illumination conditions, as revealed by analysis of plants transformed with an antisense version of the FNR gene. To investigate whether accumulation of this fl...

متن کامل

Heterologous Ferredoxin Reductase and Flavodoxin Protect Cos-7 Cells from Oxidative Stress

BACKGROUND Ferredoxin-NADP(H) reductase (FNR) from Pisum sativum and Flavodoxin (Fld) from Anabaena PCC 7119 have been reported to protect a variety of cells and organisms from oxidative insults. In this work, these two proteins were expressed in mitochondria of Cos-7 cells and tested for their efficacy to protect these cells from oxidative stress in vitro. PRINCIPAL FINDINGS Cos-7/pFNR and C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 115 4  شماره 

صفحات  -

تاریخ انتشار 1997